Lecture : New Constructive Aspects of the Lovász Local Lemma , and their Applications — June 15 , 2011

نویسندگان

  • Aravind Srinivasan
  • Ioana Bercea
چکیده

The Lovász Local Lemma (LLL) is a powerful combinatorial result used in many applications to show that a particular event happens with positive probability. It is known that if a large number of independent events each happen with positive probability, then there is positive (possibly exponentially small) probability that they all happen at the same time. The LLL, first proved by Erdős and Lovász [EL75], extends this result to the case of rare dependencies. Specifically, the LLL in its general form is the following [AS08]:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satis ability ∗

Recently, Moser and Tardos [MT10] came up with a constructive proof of the Lovász Local Lemma. In this paper, we give another constructive proof of the lemma, based on Kolmogorov complexity. Actually, we even improve the Local Lemma slightly.

متن کامل

A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satisfiability

Recently, Moser and Tardos [MT10] came up with a constructive proof of the Lovász Local Lemma. In this paper, we give another constructive proof of the lemma, based on Kolmogorov complexity. Actually, we even improve the Local Lemma slightly.

متن کامل

CS 7880 : Algorithmic Power Tools Scribe

• Two Simple Applications of the LLL • Packet Routing In this lecture, we prove the general form of the Lovász Local Lemma, and see two applications of the lemma: hypergraph coloring and finding satisfying assignments for Boolean CNF formulas. We then begin studying packet routing, another area in which we will apply the lemma. In the last lecture, we proved the symmetric form of the Lovász Loc...

متن کامل

An alternative proof for the constructive Asymmetric Lovász Local Lemma

We provide an alternative constructive proof of the Asymmetric Lovász Local Lemma. Our proof uses the classic algorithmic framework of Moser and the analysis introduced by Giotis, Kirousis, Psaromiligkos, and Thilikos in " On the algorithmic Lovász Local Lemma and acyclic edge coloring " , combined with the work of Bender and Richmond on the multivariable Lagrange Inversion formula.

متن کامل

An Algorithmic Proof of the Lopsided Lovász Local Lemma (simplified and condensed into lecture notes)

For any probability space and a collection of events we give an algorithmic proof of the Lovász Local Lemma if there is a resampling oracle for each event. The resampling oracles act as an abstraction layer that isolates the details of the proof from the details of the probability space. The number of resamplings performed by the algorithm is bounded by expressions similar to those obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011